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I. Phys.: Condens. Matter 6 (1994) 151-362. Printed in the UK 

Dynamical scaling for spinodal decomposition-a small-angle 
neutron scattering study of porous Vycor glass with fractal 
properties 

J-C Li and D K Ross 
Department of Physics. University of Salford, Salford M 6  5NT. UK 

Received 21 August 1993, in final form 21 October 1993 

Abstract. A model is developed for analysing small-angle sanering data for systems undergoing 
spinodal decomposition. l h i s  model is expressed as an integration of a series of Fourier 
components of the density fluctuation A ( 8 )  sin(gr+v) based on Cahn’s l i n w  theory of spinodal 
decomposition. Hence the lime evolution of the chmderis t ic  crossover phenomenon and the 
width of the crossover of the scaling function of the structure factor are predicted to be associated 
with the maximum spinodal wavenumber p” and the ConelaIion length em. respectively. The 
mugh surfaces and fractal network of porous materials are also considered in  the model. Results 
of calculations based on this model nre compared with small-angle neumn scattering data for 
dry and wet porous Vycor glass and give an excellent agreement. 

1. Introduction 

Small-angle scattering (SAS) of neutrons and x-rays have been widely used to study the 
kinetics of phase separation (nucleation and spinodal decomposition) of quenched binary 
alloys [l], glasses [Z] and liquid mixtures [3]. The determination of the properties of such 
materials is of great importance from both theoretical and experimental points of view. 
The process of spinodal decomposition has been relatively well studied in the past. The 
existence of dynamical scaling, i.e. a stmcture factor S ( Q ,  r )  for the spinodal decomposition 
of binary mixtures has been proposed by several authors, based on phenomenological and 
statistical models [ 4 4 ]  as well as on detailed computer simulations [7,8]. However, a 
satisfactory model of a scaling structure factor that could fit both early and late stages 
of the time evolution of the structure function is still not available. A fairly successful 
approximation was developed by Langer er al [9]  and this has been extended by Kawasaki 
and Ohta [lo], Binder eral [ll],  Billotet and Binder [12] and Horner and Jungling [ 131; this 
theory yields a prediction for S ( Q ,  t )  in fair agreement with the computer simulations during 
the early stages, at least for quenches at the critical concentration. A simple relationship 
for the later stages of decomposition has been proposed more or less independently by a 
number of authors [3,14]: the structure function S ( Q ,  f) for an isotopic three-dimensional 
system obeys the scaling relationship S ( Q , f )  a K - 3 ( t ) F [ Q / K ( r ) ] ,  where K ( t )  is some 
characteristic time-dependent length. However, a quantitative theory for predicting both 
K ( t )  and F [ Q / K ( t ) ]  is still not available. There have been several attempts to predict 
F [ Q / K ( t ) ] .  The first theoretical prediction that the structure function should scale was 
made by Binder and Stauffer [4]. Their work primarily dealt with predicting the growth rate 
of clusters in terms of the cluster-reaction model. There are only two adjustable parameters 
in this model, and hence it seems likely that this scaling theory is too simplified to be 
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accurate. Wiltzius er U[ [15] used a very similar model to fit S(Q) for porous Vycor glass. 
The results are rather unsatisfactory; however, recently Hohr er al [16] suggested a liquid- 
like hard-sphere model for porous Vycor glass as used in scattering from microemulsions 
[17], except that the spheres are replaced ey clusters with a fractal surface. The resulting 
scattering curve has a sharp peak at 0.025 A-' together with a series of oscillations on the 
high-Q side that were not observed in experimental data. There are several other models in 
the literature [ 18-20], but they also have their drawbacks. In the present paper, we represent 
a new approach based on Cahn's linear theory for spinodal decomposition [ZI], where both 
the fractal rough surface and fractal pore network of the porous media are also taken into 
account. The small-angle neutron scattering (SANS) data from porous Vycor glass, which is 
produced by spinodal decomposition following which one component, B103, is leached out 
using acid, have been well fitted using this model. For the first time, this model gives an 
analytical formula for the scattering function F [ Q / K ( r ) ]  which can be applied to a variety 
of other systems undergoing spinodal decomposition. 

J-C Li and D K Ross 

2. Theory 

For an inhomogeneous system consisting of two separated macroscopic domains that can 
be distinguished by different nuclear species, the scattering intensity per unit volume from 
the sample is given by 

where N is the total number of atoms in the system, V is the volume of the sample. Q is 
defined by Q = rC, - IC', where IC0 and are the incident and scattered wave vectors of 
the radiation, and r, and T, are the position vectors of the nth and mth atoms, respectively. 
When the masses of the molecules in the sample are significantly greater than the mass of 
a neutron, the energy transfer between the nucleus and neutron is negligibly small, hence 
ko = k ,  = 2 n j l  and Q = 4ir sinel l ;  1 is the neutron wavelength, 0 is the half scattering 
angle and V is the volume of the sample. Because small-angle scattering detects large- 
scale compositional or density fluctuations, it is more convenient to consider each domain 
(cluster) as a scattering centre. The position vector of the nth nucleus in the ith cluster can 
be represented by a sum of R; + rin, where R, is the position vector of the centre of mass 
of the ith cluster and Tin is the relative position vector of the atom n in the cluster. Thus 
the intensity can be expressed as 

We can define the form factor as 

n 

or alternatively as 
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where pi(?-;) = bi,6(r - vin)/Vj is defined as the scattering length density of the ith 
cluster centred on Ri and Vi is the volume of the cluster. If we wish to describe the scattering 
from clusters in a uniform density po background, it is convenient to modify equation (4) by 
subtracting po everywhere as a constant-density component that only contributes to Icoh(Q) 
in the forward direction ( Q  = O), i.e. 

d F , ( Q ) = S S [ ~ i ( ~ i ) - ~ I e x p [ i Q . r , l d V i  Q f 0 .  E3 

If the system has identical spherical particles, the form factors are the same, and hence the 
coherent scattering intensity can be written in the familiar form 

Imh(Q) = (N/v)F2(Q)S(Q) (6) 

where N is the total number of clusters and F(Q) is obtained from the spherical particrees. 
The structure factor S(Q) is 

For a polydisperse system the coherent scattering intensity takes a more complicated form 

Because Fi varies from cluster to cluster for such a system, this summation is difficult to 
evaluate. However, we can average the form factors by introducing a function [22] 

b(Q. R) = S m S m F , p l ( F i , Q ) ( ~ ~ ( F , ,  Q) - Pz(Fi, F j s R ,  Q))4ddF,dk; (9) 
0 0  

where PI is a probability density function of the form factor Fi between the values of Fj 
and Fi + dFi, while p~ is a similar function concerning ensembles of factors Fi and Fj ,  
where dF, and Fj are functions of Q. When T -+ 03, b(Q, R) + 0 so that equation (7) 
can be rewritten (221 

The first term in equation (10) is the contribution from individual ~Iusters, the second term 
is related to the density fluctuation in the system and is model dependent, and the third term 
is a correction term associated with the size distribution of the clusters and the correlation 
between clusters as a function of r. We will discuss these terms individually as follows. 
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2.1, The first term-scattering from separated particles 

The general expression for the first term of equation (10) is 

J-C Li and D K Ross 

(12) 

which means that the total scattering is simply the sum of the scattering intensities for each 
different type of cluster weighted by its respective probability distribution, p i [ F i ( Q ) ] .  For 
smooth surface clusters, the Porod approximation [22] is valid for all the individual clusters. 
particularly the largest. Therefore, the principal part of the curve of F?(Q) at large Q (i.e. 
Q > l/a, U being the radius of the cluster) is given by the function [22]  k ( p i  -p,)’S;/Q4, 
where Sj is the surface area of the ith cluster. When Q = 0, F:(O) = V z ( p i  - P $ ) ~ .  Hence, 
equation (12) can be written as 

N ”  
I I ( Q )  = ( N / V ) ( F ’ ( Q ) )  = - x ~ i [ F i ( Q ) l F f ( Q )  

v i  

The scattering from the rough surface of the clusters can be considered as many self- 
similar small islands on a two-dimensional surface (a two-dimensional fractal). Therefore 
the density correlation function g ( r )  o( rD-’, where 2 < D < 3. Hence, the scattering 
intensity is proportional to SiQ-“+”, where this term is also valid at D z I / a .  because 
the surface area is limited by the radius of clusters. Equation (12) can be rewritten for large 
Q as 

II(Q) = c 2 z p j ( p i  - p,)’SiQ-“+D). (14) 

2.2. The second term-spinodal decomposition 

Consider an inhomogeneous solution whose composition changes around an average 
composition CO. The free-energy difference between the initially homogeneous solution 
and the inhomogeneous solution can be written 

A G = ~ [ ~ [ c ~ r ) - c ~ ] z + K [ ~ C ( r ) ] z  1 d r  (15)  

where f is the free-energy and K is the gradient of the energy coefficient. If a 2 f / a c 2  z 0, 
the solution is stable to all infinitesimal fluctuations. On the other hand, if a2f/acz < 0, 
the solution is in an unstable state, in which case spinodal decomposition occurs. The 
mathematical theory of spinodal decomposition, originally proposed by Hillert 1231 and 
developed by Cahn and Hilliard [24]  is based on a general diffusion equation containing 
terms in the gradient of the concentration. The solution of the equation has been given 
by Cahn in a linear form by means of a series of Fourier expansions of the concentration 
fluctuations, the ith component sinusoidal having a fixed wavenumber 8,  but with random 
directions and phase constant 9(pi), being of the form 

C I ( T , ? ) - C O ~  = A ( P i , t ) e x p l P i . r + P ( P i ) l  (16) 
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where 

I) = M P i )  exp[w(Pi)tI. 

Summing over all possible solutions gives 

CO-. f )  - CO = A @ ,  0 expIP . T + 4@)I d P  s 
The value of A&) is a slow function of at f = 0 given by 

A d P )  = exp[-w(P)tl [c(T, t )  - CO)] exp(iP . T )  d r  (18) s 
where the w ( P )  is an amplification factor determining the rate of growth or decay of the 
Fourier component and depending on the physical characteristics of the system, such as 
atomic mobility. energy gradient terms and external influences. w@) is positive only in 
the spinodal region. Cahn has shown that as the decomposition proceeds, in order to satisfy 
the generalized diffusion equation, 

aclat = M(af2/aC2)v2C - 2MK PC (1% 

where M is an atomic mobility (M > 0). The solution to this equation gives 

w(p)  = -M[a* f ( C ) / a ~ 2 ~ p 2  - 2 ~ ~ 6 ~  O < B < B C  (20) 

where pc is the maximum wavenumber. ?he amplification factor w ( p )  is positive in the 
spinodal region (see figure 1). Therefore, the maximum wavenumber pc is given by 

p: = - [ a 2 f ( ~ ) / a ~ 2 ~ / 2 ~ .  (21) 

-= 7----,- T7. - i 

0 0.05 0.4 0.15 0.2 0.25 

p (A-') 
Figure 1. Diagram to illustrate schematically the behaviour of the amplification function w(B. t )  
BS predicted by Cahn's linear theory (the function w(p .1 )  is n o d i z e d  to unity). pc is !he 
maximum wavenumber and pm = &/$. 
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The spinodal wavenumber having maximum amplification in the system can be obtained 
from equation (20) as pm = &/J2. Because the free energy f(c) is a function of time I ,  
pF also changes with time as illustrated in figure 1. Therefore, the pair correlation function 
G ( r ,  f) can be written as 

J-C Li and D K Ross 

G ( r ,  f )  = N-' [c(T', f )  - CO][C'(T' - T ,  t )  - cold# (22) 

= cc N-'A(&. t)A*@?j, f )  1 exp[i(Pi-Pi)-r'+pj.r+'p(Pi)-'p(pj)ldr'. s 
i j  

As one knows that 

/ exp[i(Pi - p,) . r'] dr' = (Zn)'s@i - pj) 

all cross terms (i.e. i # j) are zero, which means that there is no interference between 
different sinusoidal wavevectors of the density fluctuation, and all the phase terms 'p are 
cancelled. The pair correlation function can thus be expressed as the sum of all Fourier 
components of the density fluctuations, each component being weighted by the amplification 
factor A2(p, I ) ,  i.e. 

G(r , r )  = C 2 ~ N - ' A ' ( p i , r ) e x p ( i ~ j  . r ) .  (24) 
i 

Consider a system that is homogeneous on a large scale where the averaging over all possible 
directions of pi gives 

(25) (exp(iP; . r ) )  = sin(&r)/pir 

and hence equation (24) can be written as 

In a real system, the long-wavelength fluctuations must break down at large scale as in other 
systems [25]. We therefore introduce an exponentially decaying term that has a correlation 
length 5 .  The pair correlation function can now be written as 

G'(r, t )  = G(r, t)exp(-r/<) = z27rA2(fii,  I)sin(pjr)(Npir)-' exp(-r/<). (27) 

Hence the total structure factor can be written as [26] 

i 

sin Qr 
S(Q,t)  = 4nrG'(r,I)- dr s Qr 

Since sin(Qr)sin(pr) can be written as [cos(Q - p)r - cos(Q + p)r]/2, Fourier 
transformation of the function sin(j;r)exp(-r/f) gives S(Q, t) in the following form: 
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As can be seen, the total structure factor is a summation over a set of multi-Lorentzian 
terms and each term (or each Fourier component of 8 )  satisfies the scaling relationship as 
discussed in the introduction. 

SAQ+ 2) a expl2W,Ei, t ) t1 t3s[ (QlPd,  ,E&1 (30) 

where s(x, CY) = [1 + (x - 1)z~2]- ' [1  + ( x  + 1 ) 2 ~ 2 ] ,  which has a maximum when CY = Dit 
and x = (Q/,Ei). Finally, as an alternative, we can write an integrated form of equation 
(29) as 

Thus the total coherent scattering intensity from the second term in equation (10) can be 
written as 

(32) 

Here (F(Q))' # P(Q)(= (Fz(Q))). They are equal when the system consists of a single 
particle size. For porous Vycor glass, the pores are produced by the spinodal decomposition 
process. Evidence suggests that the B ~ O Z  cluster distribution is rather monodispersed. 
Therefore, we could ignore the variation of Fi(Q) (i.e. the deviation of (F(Q))z from 

As can be seen, the integration of equation (32) is not possible, because the amplification 
factor A@, t )  a exp[w(,E)t] has a complex exponential form. However, in the later stages 
(i.e. large t )  of spinodal decomposition, the amplitudes of the sinusoidal waves have been 
weighted by A@, t )  in a very narrow region centred around ,Em. When t + CO, A(,E, t)  
becomes a delta function S(,E -,Em). Hence the component with wavenumber ,Em dominates 
the scattering. Hence equation (32) can be simplified as 

I z ( Q ,  CO) 

(F2(Q) ) ) .  Hence, (QQ))' = P ( Q ) .  

P(Q)(Q,E)-'{El[l + (Q - Pm)2521 - {/'[I + (Q + ,Em)'tZI).  (33) 

Figure 2 shows S(Q, t) at a series of quenching times t ,  assuming that ,E,,, increases as 
t-'I6, as given by Binder and Stauffer [4]. The results are qualitatively similar to Monte 
Carlo simulations [7,8] and experimental studies [ 1,2]. Quantitative testing of this model 
would need to be carried out for a system undergoing spinodal decomposition to fit a series 
of data sets at different quenching times, especially in the early stages. 

2.3. The third term-scattering from disordered systems-fractal geometry 

Since the fractal concept was introduced by Mandelbrot [27]. it has been successfully used 
to describe a wide range of disordered systems and irregular structures, such as branched 
polymers, percolation clusters, silica gel. colloid aggregates, cements and the rough surfaces 
of porous media. Porous Vycor glass (Corning 7930) has been proposed as a volume fractal 
with dimension 1.7*0.12 on an inter-pore scale by Even etal [28] based on EET (electronic 
energy transfer) measurements. Recently, our SANS measurements have shown very clearly 
an extra scattering component in the very-low-Q region from the porous Vycor glass but 
only when the pores are partially saturated with water during desorption processes [29]. 
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1E-4 1, , , , , , ..,, , , , , , ,,,, , , , , , , , , , I  
0.0 0.04 0.08 0.12 1E-3 0.01 0.1 1 

Q <A-') Q CA-') 
Figure 2. The dynamic scaling of lhe quenching Figure 3. Typical scattering intensities from equation 
process during spinodal decomposition. The function (36). ( 1 )  l l ( Q )  is the scattering inlensity from all 
S ( Q .  I) is calculated using equation (38) at various individual dusters; (2) I z ( Q )  is the scattering from 
scaled limes I. the densily flucluation of spinodd decomposition: (3) 

/,(e) is the intensity from a network of empty pores. 

This component has a fractal dimensions in the range from 1.65 to 1.75. We believe that 
this feature can only be seen when the pores are being emptied by reducing the partial water 
vapour pressure, the effect being at its maximum when the remaining pores are filled with 
an HzOlDzO water mixture chosen to have a scattering length density to match the silica 
matrix. Here the distribution of empty pores, a percolating system, has its own correlation 
length. This extra scattering component can be described by the third term in equation (IO), 
e.g. 

where c is the fraction of the total number of empty pores and the function G"(r) is 
frequently given as (1 - Cr3-D) exp(-r/(') [25]. The correlation length here is written as e' in order to distinguish it from the correlation length ( of the spinodal decomposition. 
Fourier transformation of G"(r) gives the third component of the scattering intensity 

I3(Q) 2 p(Q)I-tnl[l + Q2G'212 
+ Cr(5 - D)("5-D'sin[(5 - D)tan-'(Qe')l/Q[l + Q2~R1(s-D)/Z]. (35) 

2.4. Summary 

The total coherent scattering intensity can now be written as 

Lh(Q,  t) a II(Q) + Tz(Q, t) + k(Q). 
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For a system undergoing spinodal decomposition, 13(Q) is zero, because c(l - c) = 0. For 
the late stages of spinodal decomposition, the very n m o w  range of Fourier components 
around pm has been well developed, as shown in figure 1. This also has been illustrated by 
Dozier eta1 [30] for Vycor using a 500-point nitrogen desorption technique, which shows 
the pore size distribution to be rather monodisperse. Therefore we can assume that A @ )  is 
a delta function, S(/3 - pm).  so that the intensity is of the form 

where 

When all spinodal wavenumbers are zero, Zz(Q) = 0, and equation (36) is reduced to the 
form of a normal fractal system given by 

Zcob(Q) c( U 5  - D)t’(5-D)sin[(5 - D )  tan-’(Qt’)l/Q[l + Q t I ( S - D ) / z  + Zl(Q). (39) 

This is similar to the equation used by Bale and Schmidt [31]. Figure 3 shows the three 
terms in equation (36). Curve ( 1 )  is the contribution from Z,(Q), i.e. from the individual 
empty pores. Curve (2) is the ‘structure factor’ for the correlation function of pores, which 
originates from the spinodal decomposition process, and its intensity increases in proportion 
to the square of the fraction of emptied pores. Curve (3) describes the extra scattering that 
appears when pores are partially filled by water. Its intensity increases and then decreases 
because its amplitude is weighted by c( 1 - c ) .  

3. Discussion 

It is not our purpose, i n  this paper, to discuss the dynamic properties of the wavevector 
p (i.e. how these parameters vary with time, t )  and the validity of the linear solution of 
Cahn’s theory. Calculations of the dynamic structure factor S(Q. I )  using equation (36) 
require a model for the distribution function w(,9) which is associated with a2f(c)/ac2, K 

and M of the system. Cahn [Zl] states that K varies slowly with varying temperature and 
composition. For the later stages of spinodal decomposition, a single wavevector B, should 
give a good approximation for S(Q,  t ) ,  because the amplification factor A(& t )  is close 
to a delta function S(p - p,). By fitting with this model, a number of parameters can be 
obtained from equation (38) that are all of obvious physical significance-for example the 
parameter p, is associated with the positon of the peak in S(Q, b ) .  the correlation length 
5 determined by the width at half height, and has a similar physical significance to the 
correlation length in liquid systems. If increases linearly with A, (where km = 2n/&), 
all curves at different quenching times could be overlapped by changing scales. In the more 
general case, the correlation length 5 is a function of Amy i.e. 6 = n( t )km.  

In figure 4, we demonstrate an example of the fitting process using this model for porous 
Vycor. The principal features of typical SANS data from dry Vycor in figure 4 are obtained 
using the D17 diffractometer at the ILL and LOQ at ISIS [32]. In order to fit this data, only 
the first two terms 11 (Q) and 12(Q) in equation (36) need to be considered, because c = 1, 
so Z3(Q) = 0. The data for the dry sample fitted using this model gives ,9, = 0.0251 A-’ 
which corresponds to the density fluctuation wavelength A, = 250 A, = 1020 A. It will 
be noted that the second term in Z(Q) produces an asymmetry in the peak very close to 
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0 0.02 0.04 0.05 0.06 0.1 0.12 
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Figure 4. SANS intensity Venus Q for dry solid porous Vycor (Coming 7930) with a" fitted 
using lhe model. 

-1--,-,-,-,-1 I ,-9-,-,-,-,-,-,7--,-..l., ,- i 
- Expt. data \ -Fitted data 



Dynamical scaling for spinodal decomposition 361 

the observed data and that the fit is better than could be achieved with any previous models 

An interesting phenomenon occurs when porous Vycor is partially saturated with a 
matched DzO/HzO water mixture in a ratio of 64:36, which has been chosen to have the 
same scattering density as the Vycor matrix. A new scattering component appears in the 
very-low-Q region (see figure 5). This very-low-Q scattering component has a fractal-like 
power-law form, which results from the percolation network formed by the pores as they 
empty. This is the first diffraction evidence for the inter-pore scale ‘percolation network‘ 
with fractal geomeny as predicted by percolation theory [33,34]; for full details, see [35]. 
Using this model, we can fit this extra component with the third term 13(Q). Figure 5 
illustrates the fitting of the measured scattering intensity I ( Q )  for the sample at 70% RH 
(relative humidity). As one can see, the fitted profiles (smoothed curves in figure 5) agree 
well with the experimental data. The fractal component covers a range of Q from = 0.001 to 
0.05 A-’.’ This suggests that the empty pores are connected in a manner reminiscent of silica 
aerogels [36] or branching polymers, both of which systems show fractal geometry. The 
correlation length (’ for the percolation clusters cannot be defined in the present experiment 
simply because of the limitation of the Q range. From the lowest Q data measured, the 
conclusion we draw is that the correlation length is larger than 1000 A for higher-humidity 
samples, a distance equivalent to about five times the average pore separation distance. 

In summary, the theory derives a dynamic structure factor S ( Q ,  f) based on Cahn’s 
linear theory for a system showing phase separation in the unstable region in the early stages. 
Because the initial stages of phase separation are symmetric about CO. the density fluctuation 
can be described as a series of superimposed sine waves with different wavelengths. As the 
phase separation continues, higher-order terms in the diffusion equation [37] will distort the 
solution and sharp interfaces may appear. We propose that the first term in equation (36) 
could describe these sharp interfaces, and even the rough surfaces in later stages of spinodal 
decomposition. Meanwhile any deviation during the desorption or adsorption processes can 
be described by the third term in equation (36) as a correction factor. 

[15-171. 
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